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1.  Introduction

A wire rope is a highly stressed machine element. The load is introduced
into the wire rope by means of its end connection. The requirements for the
end fitting are demanding: the connection must be able to transfer great
static and dynamic forces, and must often need to be able to withstand
high temperatures. Also, it must be able to rotate freely in one or two planes
around its anchor point, and it must be easily attachable and detachable,
particularly for reeving and inspection purposes. The end connection should
also be compact, light and, just as importantly, reasonably priced. Unfor-
tunately, there is no end connection that fully meets all these criteria. How-
ever, there are a large number of attachments that meet at least some of
them.

This brochure describes the various end connections and offers advice
on their manufacture, attachment and inspection. We hope it will assist
the designers and users of cranes, equipment and architectural structures
to select the most appropriate rope end connection for their respective ap-
plications.

Should you have any specific problems or queries that have not been
dealt with in this brochure, please contact

Casar Drahtseilwerk Saar GmbH
Casarstr. 1
D- 66459 Kirkel
Tel. +49 - 6841- 80910
Fax +49 - 6841- 8694

or the author of this publication

Dipl.- Ing. Roland Verreet
Wire Rope Technology Aachen
Grünenthaler Str. 40a
D- 52072 Aachen
Tel. 0241- 173147
Fax 0241- 12982
e-Mail: R.Verreet@t-Online.de

We will do our best to help you.
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Fig. 1: The classification of rope end connections

2.  Classification

We differentiate between friction and material closure rope end connec-
tions, which comprise metallic spelter sockets as well as resin spelter sock-
ets, and friction and mechanical interlocking closure rope end connections,
which comprise non-detachable clamp connections, splice connections as
well as the detachable wedge and screwed connections. Fig. 1 shows the
classification of rope end connections.
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Fig. 2: Rope end connection using wire rope clips

Fig. 3: Wire rope clip certified to DIN 1142 Fig. 4: Wire rope clips certified to DIN 741

3.  The wire rope clip

Rope end connections using wire rope clips (Fig. 2) are very popular be-
cause they can be fabricated on-site with very little effort and they are also
very cheap. Compared with many other end connections they are easily
detachable and can be inspected without a problem.

Wire rope clips certified to DIN 1142 (Fig. 3) must not be used for end
connections with lifting devices in hoisting operations. An exception is lift-
ing gear which has been manufactured for a special and single application.
Neither must they be employed with mine shaft cables, in reeving systems
for iron and steel mill cranes, or for the permanent attachment of ropes in
reeving systems designed according to DIN 15020 Part 1.

3.1  Breaking load and tension-tension endurance

In a quasi-static pull test, rope end connections with wire rope clips achieve
about 90% of the breaking load of the wire rope used. In a dynamic ten-
sion-tension fatigue test they achieve about half the number of tension-
tension cycles of metallic spelter sockets.
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Fig. 5: The gradient of force in a rope end connection with wire rope clips
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3.2  Standardisation

Wire rope clips for detachable rope connections are standardised in
DIN 1142. DIN 741, standardising a weaker design using simple nuts (Fig. 4)
was withdrawn in 1982.

A wire rope clip consists of a clamping jaw which, because of its shape, is
also called a ‘saddle’, a U-bolt and two collar nuts (Fig 3). The clips are
identified according to their greatest permissible nominal rope diameters.
For example, a complete rope clip for the rope diameters 20mm to 22mm is
identified in the following way: DIN 1142 – S 22. The components are iden-
tified as follows:

Clamp jaw: DIN 1142 - SB 22, U-bolt: DIN 1142 - SA 22 and Collar
nuts: DIN 1142 - SC M 16

3.3  Operating mechanism

The clips press the ‘live’ rope line onto the ‘dead’ one, thereby allowing a
transfer of load between the two ropes’ lines by friction closure as well as
by form closure (indentation).

At each clip about the same amount of force is transferred from the ‘live’
onto the ‘dead’ line. If, for example, five rope clips are used at every single
clip, about 10% of the traction force is transferred. So, at first the ‘live’ line
is subjected to 100% of the traction force. At each of the rope clips it trans-
fers 10% of that force to the ‘dead’ rope line. At the thimble, the rope force
will have been reduced to exactly 50% (Fig. 5).

The ‘dead’ rope line, on the other hand, is completely unloaded at its end.
At every rope clip it takes up 10% of the traction force of the ‘live’ line until
the traction force amounts to 50% at the thimble.



7

Fig. 6: End connections with rope clips fitted incorrectly

3.4  Fabrication / Installation

Wire rope clips when used as rope end connections are attached in the
following way: First the threads of the U-bolt and the collars of the nuts are
lubricated to ensure ‘friction-free’ tightening. The rope end is laid around a
thimble and the first clip is threaded on close to the thimble. When at-
tached without a thimble, the distance between the first clip and the apex
of the loop should be about three times the diameter of the attachment pin,
at least, however, fifteen times the diameter of the rope.

The clamp jaw conforms comparatively well to the rope surface, whereas
the round U-bolt exercises an almost spot-like lateral force on the wire
rope, reducing its breaking load considerably in the area of contact.

Therefore, it must be ensured that the clamp jaw (the saddle) comes to lie
on the ‘live’ line, i.e. the line that bears the greater load, and the clamp
strap on the ‘dead’ line, the line with the lesser load.

Obviously, many users of rope clips cannot remember which line to put
the saddle on and on which line the U-bolt must be applied: two out of
three end connections are carried out incorrectly (Fig. 6).

The place for the saddle is the ‘live’ line – not the ‘dead’ one:

Never saddle a dead horse!
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Fig. 7: Tightening torques for wire rope clips

Depending on the rope diameter used, another two to five rope clips are
fitted, keeping a distance of at least the width of a clip. A total of three clips
is fitted up to a nominal diameter of 6.5mm, four clips up to 19mm, five up
to 26mm and six up to 40mm.

After attaching the clips manually, starting with the one furthest away
from the thimble, they are tightened using a torque wrench. After tighten-
ing the first clip, the one furthest away from the thimble, the rope end
connection should, if possible, be slightly loaded before tightening up the
other clips.

The required tightening torques are listed in Fig. 7. For larger rope diam-
eters they can be approximated using the following formula:

Tightening moment [Nm] = 0.22 • (rope diameter [mm])2

Under the effect of traction forces, the rope diameter reduces over time.
Therefore, the tightening torques of the collar nuts must be checked to
ensure that they are not only right after the rope has been loaded for the
first time, but also occasionally thereafter. If necessary, the collar nuts
must be re-tightened.
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Fig. 8: Rope end connection with wire rope clips fitted incorrectly

Fig. 8 shows an end connection which has been fitted incorrectly and has
not been tightened with a torque wrench. The rotated thimble clearly indi-
cates that the rope has slipped in its clips.

American users recommend the application of one more clip than the
specified number. This should grip the ‘dead’ line to the ‘live’ line, but with
a little slack (Fig. 9). If this connection slips, the ‘dead’ rope line will
straighten, which can easily be recognised (Fig. 10). If, however, the prob-
lem is not noticed, the additional clip will take part of the load from the
outer clips and may prevent further slipping.

3.5  Inspection

When inspecting a rope end connection with wire rope clips, the tightness
of the collar nuts are checked by means of a torque wrench. If necessary,
the nuts are tightened. Then the free sections of the rope are visually in-
spected – particularly along the clip zones – in order to detect wire breaks
or corrosion. Especially with ropes that are subjected to great load changes,
wire breaks might occur in the contact area between the rope lines near
the clips. If wire breaks are suspected, the clips must be completely re-
moved and the squeezed rope inspected meticulously.
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Fig. 9: The ‘dead’ end forms a bow – the wire rope has not slipped

Fig. 10: The ‘dead’ end is straight – the wire rope has slipped

Fig. 11: Round wire rope clip for mining applications

If the rope cannot be unloaded, and detaching the clips is consequently
not possible for that reason, several additional clips should be fitted. Then
one or two of the original clips can be removed and the respective sections
inspected.

3.6  Special Designs

In mining applications a specially designed wire rope clip is used (Fig. 11).
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Fig. 12: Rope end connection fitted with wire rope clips for mining applications.

Compared to the standard clip, this one has the advantage that both
halves are the same shape and cannot be mixed up during installation. In
this case the ‘live’ as well as the ‘dead’ line are saddled. Fig. 12 shows the
end connection of a hoist rope of a bucket wheel excavator fitted with round
wire rope clips.

A new variation of the rope clip, patented in the USA, is the so-called
‘Piggy-Back Wedge Socket Clip’. This clip looks like a standard clip except
for the fact that it has two clamp jaws instead of one. They are fitted with
an extra long U-bolt. Its operation will be explained in connection with the
securing of wedge sockets.
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Fig. 13: Asymmetrical wedge socket

4.  The asymmetrical wedge socket

The use of asymmetrical wedge sockets (Fig. 13) is highly popular with
mobile cranes. They can easily be fitted on site and are as easily removed,
which is a great advantage if the reeving is changed frequently.

4.1  Breaking load and tension-tension endurance

In a quasi-static pull test, wire ropes in asymmetrical wedge sockets achieve
– depending on the design of the sockets – between 80% and 95% of the
breaking strength of the rope used. In a tension-tension fatigue test they
achieve – on average – about half the tension-tension cycles of metallic
spelter sockets.
Usually asymmetrical wedge sockets are reused after the rope has been
discarded. Therefore, they must survive tension-tension fatigue tests until
rope failure without any damage.

4.2  Standardisation

Asymmetrical wedge sockets are not standardised and there is a wide vari-
ety of designs on the market.

4.3  Operating mechanism

By means of a wedge, the rope end is jammed into a tapered socket. With
increasing load, the wedge is pulled deeper and deeper into the socket and
exercises normal clamping force on the rope.
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Fig. 14: Sectional view of an asymmetrical wedge socket

The traction force in the wire rope is transferred by the friction between the
rope and the wedge and by the friction between the rope and the socket.
Fig. 14 shows a sectional view of an asymmetrical wedge socket.

4.4  Fabrication / Installation

When fitting a wedge socket, the rope end is first fed through the tapered
socket, then bent into a loop and fed back out of the socket. After that the
rope wedge is placed inside the loop and the protruding rope ends are
pulled further out of the socket, so that the wedge is pulled a good way into
it.

The ‘dead’ rope end should then poke out from the socket by at least
several rope diameters. Immediately at the exit of the wedge socket the tail
end should be secured with a wire rope clip. This will prevent the wedge
from coming loose and possibly dropping out if the end connections are
abruptly unloaded (Fig. 13).

The wire rope clip must not be fitted in a way that connects the ‘live’ and
the ‘dead’ wire line (Fig. 15). On the one hand, this would considerably
reduce the breaking strength of the ‘live’ rope line due to the clamp forces
of the clip. On the other hand, the loaded rope line would try to change its
length with every change of load. This, however, would be prevented by the
unloaded, ‘dead’ rope line. A change of length would only be possible if the
‘dead’ line also changed its length, but it would have to take over some of
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Fig. 15: Incorrect connection between the ‘live’ and the ‘dead’ rope line

Fig. 16: Rope break in the ‘live’ line at the clamping point

the load in order to do so. This, however, would lead to a tilting position of
the socket every time the rope was loaded, and would, therefore, subject
the rope to additional bending stresses at the exit of the socket.

Fig. 16 shows a boom hoist rope which was fixed with an asymmetrical
wedge socket secured by means of a wire rope clip over both rope lines. The
‘live’ line of the rope is broken at the clamping point. Fig. 17 shows the
point of break.
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Fig. 17: Rope break at the clamping point (detail)

Fig. 18: Clamping the ‘dead’ rope line with another piece of rope

As we have seen above, only the ‘dead’ end of the rope must be secured
by a wire rope clip. Oddly enough, the thread length of a rope clip is not
long enough to clamp a single rope line. Therefore, many fitters, already in
doubt as whether to clamp one or two lines, are led to the wrong conclu-
sion that they have to clip both the ‘live’ and the ‘dead’ line.

To remedy the problem of too short a thread, several national regulations
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Fig. 19: Recommended clipping of the ‘dead’ line

demand that the ‘dead’ rope line be clamped together with another short
piece of rope (Fig. 18).

A better solution, however, is to let the ‘dead’ end poke out further, and to
bend it backwards into a loop (Fig. 19). In this way the ‘dead’ line can be
clipped together with its own end at the exit of the socket.

This procedure has several other advantages: bending the line round the

very small radius of the wedge generates a permanent deformation within
the wire rope. This kink-like, plastic deformation makes it rather difficult
to push the rope end through a hook block. If the rope end connection is
likely to be opened regularly in order to change the reeving (e.g. when re-
reeving a mobile crane from a two-part to a four part line), the ‘dead’ rope
end should, if possible, poke out about one metre from the socket. The end
of that rope length can be bent backwards and fixed with the clip at the exit
of the socket.

The result of this is that the kink-like deformation will occur about one
metre away from the rope end. In this position it does not cause any ob-
struction during re-reeving, allowing the undeformed rope end to be fed
into the hook block until the deformation stops it from being pushed any
further. Then, using the rope end already poking out from the other side of
the hook block, the deformation can be pulled through.

If the asymmetrical wedge socket is installed correctly, the live rope line
enters the socket straight (Fig. 20). The straining line of the pulling force
goes straight through the fastening pin. Therefore, when the connection is
loaded, it will not tilt and bend the ‘live’ line at its exit.

If installed incorrectly, however, the straining line of the pulling force will
be offset; therefore, whenever the connection is loaded, it will tilt in order to
align the straining line with the fastening pin, thereby severely bending the
‘live’ line at the clamp’s exit (Fig. 21).

This leads to a reduction in breaking strength of the end connection.
Also, the additional pressure at the exit, in connection with the frequent
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Fig. 21: Incorrect installation
of a wedge socket

Fig. 20: Correct installation
of a wedge socket

bending round a very small radius, will generate premature fatigue of the
rope wires in that zone, so that the end connection may fail prematurely
even under smaller tensile loads.

Due to the enormous amount of bending around the laid-in wedge, often
the rope construction opens at the outside of the curve so that the steel
core of the wire rope can be seen. Under normal circumstances this is not
critical. If wire breaks can be found in those sections, they would probably
have occurred during installation. Unfortunately, time and again, a fitter
will try to drive the wire rope, along with the wedge, into the socket by
means of a series of hammer blows. During this ‘procedure’ the wires on
the rope’s surface are damaged.
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Fig. 22: Head-high wedge sockets on a dragline

4.5  Inspection

When inspecting an asymmetrical wedge socket, one should first make
sure that the right sizes of wedge and socket for the rope diameter are
being used. If the socket is too big, or the wedge is too small, the wedge will
be pulled too far out of the socket when under load. Therefore, it is very
helpful, particularly if the wedge sockets are being frequently reused, to
mark the parts, prior to their first use, with paint or chasing tools.

Furthermore, one should check whether the wedge socket has been fitted
correctly and that the ‘live’ line is not bent when under load. The rope
should be examined for wire breaks in the area of the wedge socket, and if
necessary the wedge socket should be completely dismantled.

After discarding the rope, the wedge socket should be examined very
carefully for physical damage and potential cracks, before it is reused.

4.6  Special designs

The number of special designs of asymmetrical wedge sockets is enormous.
The types vary depending on material, manufacturing processes (cast and
welded designs), geometry (wedge angles ranging between 14° and 30°) and
the method by which the ‘dead’ rope line is secured. Fig. 22 shows two
extremely large wedge sockets used to attach the hoist ropes of a dragline
in Australia.
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Fig. 23: ‘Piggy-Back’ wedge socket clip

Fig. 24: Attachment of the ‘dead’ rope line to the body of the socket

In the USA, one manufacturer offers a patented wire rope clip which
clamps the ‘dead’ rope line tightly at the exit of the wedge socket, whilst
loosely holding the ‘live’ rope line. This so-called ‘Piggy-Back’ wire rope clip
looks like a standard rope clip, except for the fact that it has not only one,
but two clamping jaws (saddles). These are fitted with an extra long U-bolt
(Fig. 23).

Another design of the asymmetrical wedge socket attaches the ‘dead’ rope
line to the body of the rope socket (Fig. 24).
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Fig. 25: Attachment of the ‘dead’ rope line to the wedge

Fig. 26: Wedge socket with built-in swivel

A new and promising end connection – patented in the USA – is the wedge
socket with an extended wedge to which the ‘dead’ rope end is attached
(Fig. 25).

When rotation-resistant ropes are used, it is often recommended that a
swivel be fitted between the rope end connection and the point of attach-
ment to the crane. However, the lifting height of the device will be reduced
by the fitting of the swivel. Here the use of an asymmetrical wedge socket
with a built in swivel is recommended (Fig. 26).

This end connection reduces the lifting height only marginally and has
the added advantage that the swivel will always automatically align itself
with the wire rope.
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Fig. 27: Symmetrical wedge socket in accordance with DIN 15 315

5.  The symmetrical wedge socket

The symmetrical wedge socket (Fig. 27) is used as an end connection for
elevator ropes. It can be easily attached and just as easily removed, which
is a great advantage when manually adjusting the length of elevator ropes.

5.1  Breaking load and tension-tension endurance

In a quasi-static pull test, wire ropes in symmetrical wedge sockets achieve
between 80% and 85% of the breaking strength of the wire rope used. In a
tension-tension fatigue test they achieve – on average – about half the
number of tension-tension cycles of metallic spelter sockets. After discard-
ing the rope, symmetrical wedge sockets are normally reused. Therefore,
they must survive tension-tension fatigue tests until rope failure, without
any damage.

5.2  Standardisation

Symmetrical wedge sockets are standardised in DIN 15 315.

5.3  Operating mechanism

For the functioning of the symmetrical wedge sockets, section 3.3 applies
accordingly. In contrast to a correctly installed asymmetrical wedge socket,
the loading line of the force applied to the symmetrical wedge socket will
always be offset from the centre of the fastening pin. For this reason, the
end connection will always assume a slightly tilted position when under
load. This, however, is of minor importance with elevator ropes which are
always used with high design factors and only small changes in line pull.
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5.4  Fabrication / Installation

The installation of symmetrical wedge sockets is carried out in the same
way as described in section 4.4. for asymmetrical ones. Yet, due to the
symmetry of the socket, there is no danger of fitting it incorrectly. After the
wedge has been pulled into the socket, it is secured against falling out by
means of a split-pin. In contrast to the procedure for asymmetrical wedge
sockets, the rope clip must be attached in a way that connects the ‘live’ line
with the ‘dead’ one.

5.5  Inspection

The inspection of a symmetrical wedge socket is carried out in a similar
way to that of asymmetrical ones (see section 4.5).

5.6  Special designs

There are no known special designs of symmetrical wedge sockets.
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Fig. 28: Thimble splice

6.  The splice

The splice is the oldest end connection for ropes. Fibre ropes have been
spliced for thousands of years. Wilhelm August Julius Albert, the inventor
of the wire rope, was also the first person to manufacture splices as end
connections for wire ropes. Nowadays, however, the splice is being replaced
with other types of end connections. On steel mill cranes and other appli-
cations where some other types of end connections are not permitted be-
cause of high temperatures, the splice is still of great importance.

A splice around a thimble is called a thimble splice (Fig. 28). A splice
which simply forms a loop without a thimble is called a loop splice.

6.1  Breaking load, tension-tension endurance and working
       temperatures

In a quasi-static pull test, splice end connections in accordance with
DIN 3089 Part 1, transfer about 85% of the breaking strength of the wire
rope used. If round thimbles are employed, this figure will be reduced to
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about 50% of the breaking strength of the rope. In a tension-tension fa-
tigue test, splice end connections achieve well below half the number of
tension-tension cycles of metallic spelter sockets.

The working temperatures of splice end connections on wire ropes with
fibre cores, are between -60°C and +100°C. Splice end connections on wire
ropes with steel cores may be used at temperatures of between -60°C and
+400°C. At temperatures of between +250°C and +400°C, the lifting capac-
ity of the wire ropes must be reduced to 75%.

6.2  Standardisation

A spliced rope end connection is standardised in DIN 3089 Part 1 for six
and eight strand ropes.

6.3  Operating mechanism

The splice’s grip is caused solely by the friction closure between the strands
of the wire rope and the spliced strand ends. Here, of course, it is a great
advantage that when the wire rope is strained by a load, it tries to reduce
its diameter, and in doing so exerts a contracting pressure on the spliced
strands.

If, however, the wire rope is frequently strained in use by high loads
(more than 15% of the minimum breaking strength) and afterwards com-
pletely or almost completely unloaded, then there is a danger that the splice
will loosen and that the spliced strand ends will work themselves out of the
splice.

For this reason DIN 3089 categorically prohibits splices as end connec-
tions for ropes with these loading characteristics, e.g. for hoist ropes on
cranes with small ‘dead’ loads.

6.4  Fabrication / Installation

The production of a splice is described in great detail in DIN 3089 Part 1.
Eight-strand ropes are spliced slightly differently to six-strand ropes, and
ropes with a steel core differently to ropes with a fibre core. A splice can be
executed both in the direction of lay, as well as against it.

In the following, the most important steps in the production of a splice
are described for a loop splice on a six-strand wire rope with a fibre core.

First the rope to be spliced is formed into a loop with a certain surplus
length and is served at the designated loop end. The two pieces of rope are
then connected by a second serving (Fig. 29). Then the single strands of the
loose end are unlayed up to the serving and inserted between the strands
of the ‘live’ line (Fig. 30) according to the specifications of the standard.

In order to obtain a gap between the strands, a marlin spike – preferably
a flat one – is usually used (Fig. 31). This is pushed between the strands
and then twisted so that it lifts the strands and provides the necessary
space to insert the strand ends.
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Fig. 29: Seizing at the loop end Fig. 30: Inserted strands

Figs. 32 and 33 show a splice on an eight-strand wire rope with a marlin
spike inserted.

When splicing larger diameter wire ropes, physical strength is often in-
sufficient to lift the outer strands. In these cases, hydraulic marlin spikes
are used. In order to make lifting the strands easier, sometimes the ropes
are mechanically unlayed in the splice zone. After the strands have been
inserted, the ropes are closed again. Fig. 34 shows splicers working with a
device which can turn the rope end by motor.

When every strand has been put through, pulled tight and hammered
home once, one tuck has been completed. When splicing ropes with a fibre
core, after the fourth tuck the bare fibre core is cut off.

Now, between every two outer strands of the ‘live’ rope, one inserted strand
must poke out.

With regular lay ropes, another five roundstitches are completed in the
same way. With Langs lay ropes or regular lay ropes which are mainly
subjected to tension-tension forces, another seven roundstitches must be
completed.
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Fig. 31: Hammering in the marlin spike in

Fig. 32: Splice on an eight-strand wire rope with a steel core
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Fig. 33: Splice on an eight-strand wire rope with a steel core (detail)

After that, one last so-called half roundstitch is made using every second
strand only, to create a transition between the distinctly thicker splice zone
and the unspliced rope length.

All the protruding strand ends are then cut off leaving a projecting end of
approximately one strand diameter. In order to reduce the danger of injury
all strand ends are wrapped with hemp, plastic or wire. Finally, the seizing
which was put on initially, is removed.

6.5  Inspection

It is relatively easy to inspect a splice visually. A splice must be discarded
when wire breaks occur or the strands in the area around the splice have
slipped out by the length of one roundstitch, or if they are heavily corroded.
Several users recommend that the splice be lightly sprayed with paint once
it is completed, so that any strand slippage can be easily recognised. If
slippage does occur, the unsprayed sections will be visible where once they
were hidden.

To assess the condition of a splice it may be necessary to remove any
plastic tapes, seizing wires or seizing strands from the splice zone.
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Fig. 34: Splicers at work

6.6  Special designs

There is a great number of non-standardised special designs of the splice
as an end connection. However, they will not be covered in any further
detail in this brochure.
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Fig. 35: Aluminium clamps are probably the most wide-spread end connection
in Europe

7.  The aluminium clamp

The aluminium clamp is probably the most wide-spread end connection in
Europe (Fig. 35). In the USA this end connection is called a ‘mechanical
splice’.

7.1  Breaking load, tension-tension endurance and working
       temperatures

In a quasi-static pull test, aluminium clamps achieve - depending on their
design – between 80% and 100% of the breaking strength of the wire rope
used. In a tension-tension fatigue test they achieve – on average – about
60% of the number of tension-tension cycles of metallic spelter sockets.

Aluminium clamps on wire ropes with fibre cores may be used at tem-
peratures of between -60°C and +100°C. The permissible working tem-
peratures of aluminium clamps on wire ropes with steel cores are from -
60°C to +150°C.

7.2  Standardisation

Aluminium wrought alloy clamps are standardised in DIN 3093 - Parts 1
and 2.

7.3  Operating mechanism

The clamps firmly press the ‘live’ rope line onto the ‘dead’ one and in doing
so allow a transfer of force between the two rope lines by friction closure as
well as by form closure. The mechanical interlocking is caused by the two
ropes both indenting each other, as well as the two ropes indenting the
aluminium sleeve.

7.4  Fabrication / Installation

The sleeves required for the fabrication of aluminium clamp end connec-
tions are standardised in DIN 3093 Part 1.
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Fig. 36: Clamp shapes
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First the desired clamp shape must be selected. Clamp types are differ-
entiated between cylindrical form A, cylindrical-rounded form B and cylin-
drical-conical form C (Fig. 36).

Types A and B are fabricated from the same clamp slugs (Fig. 37). Type C
is produced from the same sized slugs but with a flat cone-point and a
window (Fig. 38). Type C is intended to make it easier to pull the rope ends
out from under a load. The sharp rope ends poking out from clamp types A
and B present a risk of injury. Type C eliminates this danger by completely
enclosing the ‘dead’ rope end.

The correct clamp size must be selected in accordance with the nominal
diameter, the fill factor and the design of the wire rope. For nominal rope
diameters from 7mm to 14mm, the clamp-size number increases in steps
of one, for diameters from 16mm to 28mm in steps of two, and for diam-
eters from 32mm to 60mm in steps of four. There are four distinct cases
(Fig. 39):

Case X for single-layer round-strand ropes with a fibre core, and for ca-
ble-laid ropes with fill factors of at least 0.36. For these ropes a clamp-size
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Fig. 37: Slug for clamps A and B

Fig. 38: Slug for clamp C
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number is selected corresponding with the nominal rope diameter. For ex-
ample, a rope with a nominal diameter of 22mm is pressed with a No. 22
clamp.

Case Y1: For single-layer round-strand ropes with steel cores and also
for multi-layer round-strand ropes, with a fill factor of up to 0.62. For these
ropes the clamp size is chosen one number higher than the corresponding
nominal rope diameter. As from 14mm to 28mm these numbers increase
in steps of two, a rope with a nominal diameter of 22mm would be pressed
with a No. 24 clamp.

Case Y2: For single-layer round-strand ropes with a steel core and also
for multi-layer round-strand ropes, with fill factors between 0.62 and 0.78.
For these ropes the clamp is chosen two numbers higher than the corre-
sponding nominal rope diameter. As from 32mm to 60mm these numbers
increase in steps of four, a rope with a nominal diameter of 44mm would be
pressed with a No. 52 clamp.

Case Z: For open spiral ropes with a fill factor of at least 0.78. For these
ropes the clamp is also chosen two numbers higher than the nominal di-
ameter of the wire rope. Here two clamps must be fitted with a distance of
twice the rope diameter. For example, a rope with a nominal diameter of
22mm would be pressed with two No. 26 clamps.
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Fig. 39: Clamp-size numbers according to DIN 3093 Part 2. The clamp-size numbers
for Casar Special Wire Ropes are printed underneath the table
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Fig. 40: Dimensions of the loop
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For various special wire ropes, such as ropes with an intermediate plas-
tic layer, and for rope designs with a high fibre content in their strands,
different clamp-size numbers could be required from those expected based
on to their fill factors. The clamp-size numbers for Casar Special Wire Ropes
can be found at the end of the table on page 31.

When cutting wire ropes to length, it must be ensured that the rope sec-
tions which later lie inside the clamp are not damaged and that the lay
length is not changed in this section. When the rope is cut to length and
fused, it must be ensured that the annealing length is not greater than one
rope diameter. In addition, the rope ends must not be chilled. Ropes using
type C clamps (cylindrical-conical), where the rope end is enclosed by the
clamp, must not be cut and fused.

If the seizing of the wire rope is clamped as well, it must consist of wires
or strands of a low tensile strength only, and the seizing wire may have a
maximum diameter of only 1/20th of the rope’s diameter.

The wire rope is threaded through the clamp, shaped into a loop or laid
round a thimble and then fed back through the clamp. A loop which is half
a loop length wide (Fig. 40) must be the length of three attachment pin
diameters, and in any case not less than fifteen rope diameters.

When pressed with a thimble, the distance between the clamp and the
thimble should be two rope diameters after pressing. With clamps of types
A and B, the rope end must project from the clamp. With type C it must end
with the cylindrical part of the clamp and be visible in the clamp’s window.

Before being transported to the press, wire ropes are often prepared on a
work-bench. In order to prevent the clamp from slipping during transpor-
tation, it can be fixed temporarily on the rope lines either by means of a
hammer, a vice or some hydraulic device.
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Fig. 41: Incorrect attachment of the clamp Fig. 42: Correct attachment of the clamp

Fig. 43: Pressing of the aluminium clamp

Great care must be taken to ensure that the sides of the clamp are not
dented because if they were they might collapse during the pressing proce-
dure (Figs. 41 and 42).

Before pressing, the contact zones and the interior surfaces of the die
must be cleaned. In addition, the interior surfaces must also be greased so
that the aluminium clamp can flow unhindered during the pressing. Next,
the prepared, unpressed clamp is laid into the die, aligned exactly in the
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Fig. 44: Final dimensions of aluminium pressings in accordance with DIN 3093 Part 2

direction of the pressing and is finally pressed in one go until the contact
zones of the die halves meet (Fig. 43). After pressing, any seams left on the
clamp should be filed off in order to avoid injuries.

Along an arc of 120° around the circumference, the pressed clamp must
have the diameter specified in DIN 3093 Part 2. This diameter corresponds
to twice the clamp No. in mm (Fig. 44).

Before pressing, the length of the cylindrical part of the clamp is 3.5
times the amount of the clamp-size number in mm, after pressing it is 4.5
times that amount. The clamp must bear the presser’s initials (two letters)
and the DIN logo.
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Fig. 45: Force transfer in aluminium clamps

50%

50%

100%

0%

50%

In the area of the clamping zone, the ‘live’ and the ‘dead’ rope line are
heavily pressed against each other. When pressing regular lay ropes, the
outer wires, which have approximately the same direction as the rope’s
axis, will arrange themselves in a parallel order (Fig. 46).

When pressing Langs lay ropes, however, the outer wires of the neigh-
bouring rope lines cross over so that they can nick each other (Fig. 47).
However, tests have shown that this does not lead to great differences in
the breaking strengths between aluminium pressings of regular lay ropes
and Langs lay ropes.

Along the clamping zone, regular lay ropes are slightly superior to Langs
lay ropes in tension-tension fatigue tests. However, this does not influence
the choice of lay for running ropes as these are usually discarded because
of wire breaks along the working zone, and not because of damage at the
end connections.

Occasionally, rope end connections of the X and Y types are found with
two aluminium clamps (remember that two aluminium clamps are a must
with type Z). The second clamp is meant to increase safety. Yet, in reality, it
makes the end connections unsafe. In the clamp zone, the ‘live’ rope line
usually transfers 50% of the line pull to the ‘dead’ line (Fig. 45). If a second
clamp is fitted in the immediate vicinity of the first, it might happen that –
due to uncontrollable movement in the section between the clamps during
the pressing procedure – the ‘live’ load line is slightly longer than the ‘dead’
one. The flow of the force runs along this short zone of the ‘dead’ line. As a
consequence, one of the clamps must now transfer not only 50%, but 100%
of the line pull (Fig. 48). When the line pull is high, the clamp cannot with-
stand these stresses. For these reasons a rope end connection with two
aluminium clamps is not permitted in cases X and Y.
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Fig. 46: The contact zones of regular lay ropes made visible
by cutting the clamp in half

Fig. 47: The contact zones of Langs lay ropes made visible
by cutting the clamp in half
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Fig. 48: Flow of force in an aluminium pressing when two clamps are used

Fig. 49: Incorrect connection of two ropes
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For case Z, which only applies to spiral rope, i.e. for relatively stiff strands,
the danger of differences in rope length between the clamps does not exist.

Fig. 49 shows the lengthening of a sling by using an aluminium clamp.
Here, too, the clamp must transfer 100% of the line pull. This kind of rope
lengthening is not permitted.
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Fig. 50: Physical damage to the aluminium clamp

7.5  Inspection

When inspecting the clamp and the loop for the first time, their dimensions
must be checked to ensure they meet the specifications. Later, the end
connection must be inspected for wire breaks as well as for cracks and
physical damage in the area around the aluminium clamp (Fig. 50).

Since the introduction of force into the end connection occurs off-centre,
the clamp will adopt a slightly tilted position, which strains the clamp near
the exit point of the ‘live’ line. Therefore, cracks and wire breaks may occur
at this point. At the other end of the clamp, the two projecting rope lines
will try to change their angle and widen the clamp. This might lead to
cracks in the clamp, especially if it was attached too close to the thimble, or
if the loop was too short. Cracks in the conical part of type C clamps do not
affect the breaking strength of the end connection.

During every inspection it must be checked whether the position of the
‘dead’ rope line has changed. When employed in a marine environment, the
clamp should also be checked for corrosion damage. Fig. 51 shows a cor-
roded aluminium clamp.
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Fig. 51: Corroded aluminium clamp

7.6  Special designs

Various suppliers offer special designs, but the number is too great to cover
here.
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Fig. 52: Various designs of the Flemish Eye

8.  The Flemish Eye

The Flemish Eye is a comparatively new end connection. It consists of a
combination of a splice and a pressing. It is mainly used in steel mills,
where ropes are exposed to higher temperatures, and serves as a replace-
ment for the thimble splice.

8.1  Breaking load, tension-tension endurance and working
       temperatures

In a quasi-static pull test, rope end connections with Flemish Eyes transfer
between 80% and 100% of the breaking strength of the wire rope used. In
a tension-tension fatigue test they achieve – on average – about 70% of the
tension-tension cycles of metallic spelter sockets.

Rope end connections with Flemish Eyes may be used at temperatures of
between -60°C and +400°C. At temperatures between +250°C and +400°C
the lifting capacity of the wire ropes must be reduced to 75%.

8.2  Standardisation

The Flemish Eye with steel clamps is standardised for single-layer round-
strand ropes with a steel core in DIN 3095 – Parts 1 and 2. Different types
of Flemish Eyes are denoted as follows: Flemish Eyes without a thimble
(Type PF), and Flemish Eyes with a thimble (Types PFKF and PFKV) (See
Fig. 52).



42

8.3  Operating mechanism

Even without pressing, a Flemish Eye transfers as much as 70% of the
breaking strength of the wire rope used. This result is achieved just by the
friction closure between the rope’s elements. A further improvement of that
result is achieved by friction closure and form closure when the steel clamp
is pressed on.

8.4  Fabrication / Installation

First it must be decided whether or not the steel core of the rope should be
pressed along with the outer strands. If so, then a clamp of type A – DIN 3095
Part 1 – must be used. If not, a clamp of type B should be fitted. Both types
are available in cylindrical and in cylindrical-conical form. The latter de-
sign is supposed to prevent the clamp from getting caught when being
pulled from under a load. Its disadvantage is that it makes inspection more
difficult.

First, the as yet unworked rope is pulled through the steel clamp se-
lected. Then the outer strands of the rope are unlayed and separated into
the required lengths (Fig. 53 B). Here the rope length must be chosen in a
way that the loop length for a Flemish Eye without a thimble (Type PF)
amounts to three times the size of the attachment pin diameter, and in any
case to at least twenty rope diameters (Fig. 54). When fabricating a Flemish
Eye with a thimble (Types PFKF or PFKV), the unlayed rope length must
amount to at least four lay lengths of the wire rope.

The wire rope’s core is bent backwards and formed into a loop. Then the
unlayed wire rope halves are closed around the wire rope’s core. In this
way, for instance, the core of an eight-strand rope is closed from the right
and left with only four strands respectively, until the strands from both
sides are rejoined at the head of the loop. When the strands are closed
further, starting from the head, a complete wire rope is formed in the vicin-
ity of the loop (Fig. 53 C).

After the outer strands of the rope have been closed completely around
the rope core (Fig. 53 D), they are all wound further around a piece of the
non-unlayed rope beneath the loop. Then the steel clamp is slid over the
strand ends and is pressed in several steps in accordance with the specifi-
cations. If a steel clamp of type B is used, the steel core within the clamp
must be removed before pressing.

In a modification of the procedure, first the steel core is split and wrapped
around the core strand, then the outer strands are wound around the loop
and pressed with a steel clamp.

The clamp must display the following information: identifying letter F,
the breaking strength, the presser’s initials (two letters) and the DIN logo.



43

Fig. 53: The fabrication of a Flemish Eye

A B C D

8.5  Inspection

The inspection of Flemish Eyes fitted with cylindrical-conical clamps is
difficult, because any displacement of the strands inside the clamp cannot
be detected. With Flemish Eyes of the PFKV type with cylindrical steel
clamps, the strand ends project from the clamp, making dislocation of the
strands slightly easier to detect. Flemish Eyes must be checked for wire
breaks, especially in the area around the clamp.
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Fig. 54: Dimensions of the loop
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8.6  Special designs

Flemish Eyes also achieve satisfactory results when they are fabricated
using an aluminium clamp. This variant, which is not suitable for opera-
tion in high temperatures, is not covered by any recognised standards.

A Canadian manufacturer offers a variation on the Flemish Eye where
the loop is secured by a resin spelter socket instead of a steel clamp. This is
achieved by sliding a thin-walled aluminium clamp over the strand ends
once they have been closed. It is then plugged with a two-part hardening
resin. Of course, this variant is not suitable for operation in high tempera-
tures either, but its advantage is that it can be fabricated manually on any
building site or drilling platform without the aid of a large press. Under
quasi-static loading, Casar has achieved very high breaking loads with this
variation of the Flemish Eye.
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9.  The swaged socket

A swaged socket, also referred to as a ‘swaged terminal’, is an end connec-
tion characterized by a sleeve which is slid onto the rope end and is at-
tached by either pressing, rolling or hammering it on (Fig. 55). Its advan-
tages are the coaxial introduction of force and ease of fabrication. In Eu-
rope the swaged socket is mainly used for ropes with small diameters,
such as Bowden strands, aircraft cables or stainless steel shrouds for sail-
ing boats. In the USA, however, the swaged terminal is also very popular as
an end connection for suspension ropes and crane hoist ropes.

Fig. 55: Swaged socket

9.1  Breaking load and tension-tension endurance

In a quasi-static pull test swaged sockets transfer – depending on their
design and installation – between 90% and 100% of the breaking strength
of the wire rope used. In a tension-tension fatigue test, they achieve – on
average – about 75% of the number of cycles of metallic spelter sockets.
Rolled-on terminals achieve an even higher number of cycles than metallic
spelter sockets.

9.2  Standardisation

With the exception of aviation standards for small rope diameters, swaged
sockets are not covered by any standards in Germany. There is a great
variety of designs on the market.

9.3  Operating mechanism

The wire rope is inserted into the bore hole of the bolt. Then the bolt is
attached to the rope by either pressing, rolling or hammering. The transfer
of force from the wire rope to the bolt (the terminal) is essentially managed
by form closure (indentation).
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9.4  Fabrication / Installation

There are many designs of swaged sockets on the market. Fig. 56 shows an
eye socket, an open socket,  a screw terminal and one design incorporating
a ball head.

Fig. 56: Designs of swaged sockets

Before the terminal is pressed, hammered or rolled on, it is important to
ensure that the bore hole of the sleeve is free from any swarf. If there is any
left in the bore hole, the wire rope might not be pushed far enough into the
bore hole and the bolt might be pressed in the wrong position. As a rule the
wire rope should be pushed into the bore hole by an amount equal to be-
tween four to six rope diameters.
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To make sure that the rope is actually pushed far enough into the sleeve,
it should first be held alongside the bolt and the required length marked on
the rope with a coloured crayon or a felt pen. Then the rope is pushed into
the bolt as far as is possible. The crayon mark should then be very close to
the exit of the sleeve. Finally, the sleeve is pressed in two planes perpen-
dicular to each other, by using either a stationary knee lever or a hydraulic
press (Fig. 57).

Fig. 57: Pressing procedure

When being pressed in a rotary swager, the sleeve is beaten by two or
four stationary hammers at very short intervals (Fig. 58). During this proc-
ess, the sleeve must be turned once through 90° whilst being moved longi-
tudinally.

Usually the manufacturers of the sleeves will state the permissible rope
diameter and the diameter of the sleeve in its pressed and unpressed con-
dition. The bolt diameter is usually reduced by 15% to 20%. Achieving the
specified final swaged diameter is an accepted proof of successful pressing.
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Dipl. Ing. Hemminger, of the University of Stuttgart, has developed the
following formula to calculate the minimum diameter of a sleeve after press-
ing:

In this formula

d indicates the nominal diameter of the wire rope
f the fill factor of the wire rope
Ro Rope the tensile strength of the wire rope
Ro Sleeve the tensile strength of the sleeve material

According to Hemminger, the bore of the unpressed sleeve for wire ropes
with nominal diameters of 0% to +5% should have a maximum diameter of
the nominal wire rope diameter plus 10%.

Eight-strand wire ropes with a fibre core should not be pressed with a
bolt. With six-strand wire ropes with a fibre core, the core should be re-
moved to an amount equal to its length in the bolt and should be replaced
by piece of outer strand of an equal length.

9.5  Inspection

A swaged socket must be inspected for cracks and physical damage near
the point of its attachment. In addition, the wire rope must be inspected for
corrosion or wire breaks where it exits from the bolt.

Fig. 58: Cross-sectional view of a rotary swager for attaching swaged sockets

Dmin = d
f Rp câble

Rp manchon
+ 1
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9.6  Roller-swaged sockets

Swaged sockets can also be roller-swaged onto wire ropes. The advantage
of this procedure is that the bolt is not pressed along its entire length in
one go. On the contrary, the rollers successively press short pieces of the
terminal onto the rope (Fig. 59). Therefore, the force required from the
swaging machine is relatively low, with the result that these machines can
be made compact and transportable (Fig. 60).

Fig. 59: Successive pressing of short sections of the end connection

With roller swagers, the end connections can be fabricated directly on the
construction site or on a drilling platform. This is particularly advanta-
geous in situations where the exact length of rope required is not known
before work commences. This is why these types of machines are very popu-
lar for producing shroud fastenings in the yacht building industry.

Compactness of machinery is not the only advantage of roller swagers.
When the bolt is either pressed or hammered onto the wire rope, the steel
from the cylinder is pressed into the valleys between the outer strands of
the wire rope, resulting in indentation between the bolt and the rope. When
pressed further, there is no space left into which the steel can be forced.
Therefore, the resistance increases and the bolt is lengthened.

Since the wire rope has been heavily indented with the bolt cylinder, it is
forced to follow the lengthening of the bolt. This lengthening is the reason
why, in the area around the bolt of a ready swaged socket, the wire rope –
even when unloaded – is subjected not only to enormous contact pressure,
but also to consistently high pulling forces.
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This is not the case in a rolled-on terminal where the bolt is pressed and
lengthened little by little. The lengthening of the bolt can take place com-
pletely unhindered along the unpressed section of the wire rope. In this
way, the socket is pressed without lengthening the rope too much. For this
reason, rolled-on swaged sockets achieve a considerably higher number of
tension-tension cycles in a tension-tension fatigue test than swaged sock-
ets pressed on conventionally.

There are two different designs of roller swagers on the market: One de-
sign presses the terminal by means of two power-driven rollers. Here the
sleeve, behaves as dough might do, and tends to bevel around one of the
two rollers. The result is a curved end connection which can crack under
tensile fatigue stresses.

Fig. 60: Compact, transportable roller swager

In a second case, the end connection is pulled hydraulically through a
pair of manually operated rollers synchronised by gear wheels (Fig. 59).
During the entire pressing procedure, a pulling force is effective in the
loading direction of the terminal, which results in a perfectly straight end
connection.

9.7  Special designs

There is a great variety of special designs of swaged sockets on the market.
In all cases the manufacturer’s instructions should be carefully studied
and strictly observed.
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10.  The metallic spelter socket

The metallic spelter socket is a very reliable and efficient rope end connec-
tion. In a pull test it achieves the highest breaking loads, and furthermore,
its tension-tension fatigue endurance is excellent. Therefore, it lends itself
to all those applications where reductions in breaking strength, caused by
the use of end connections, need to be taken into account when selecting
the wire rope diameters. It is also used for applications where the end
connection is subjected to high tension-tension stresses, as is the case
with suspension ropes of crane booms (Fig. 61) or engineering structures
(Fig. 62).

10.1  Breaking load and tension-tension endurance

In a quasi-static pull test, metallic spelter sockets transfer the full break-
ing strength of the wire rope used. In a tension-tension fatigue test, they
achieve the highest number of tension-tension cycles of all rope end con-
nections.

10.2  Standardisation

Metallic spelter sockets as an end connection are standardised in DIN 3092
Part 1, the open and closed sockets themselves are standardised in
DIN 83 313.

Fig. 61: Suspension ropes for lattice boom cranes
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10.3  Operating mechanism

At its end, the wire rope is fanned out like a brush which is then pulled into
the conical socket. Once in position a metallic cone is cast securing the
brush of the rope into the rope socket. With increasing line pull, the metal-
lic cone is pulled deeper and deeper into the socket, generating increasing
transverse clamping forces. The transfer of force between the metallic cone
and the rope socket is achieved purely by force closure.

Fig. 62: Suspension ropes on structures

10.4  Fabrication / Installation

10.4.1  Selection of rope socket

Wire rope sockets are available in two types: open and closed sockets.
Fig. 63 shows an open wire rope socket in accordance with DIN 83 313.

Open wire rope sockets provide a conical cup to contain the spelter cone,
and fastening lugs with holes for a pin.

Open wire rope sockets are hinge-mounted by their fastening pin. They
cannot follow a displacement of the rope perpendicular to the plane of rota-
tion.
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Fig. 64 shows a closed wire rope socket in accordance with DIN 83 313.
Closed wire rope sockets provide a conical cup to contain the spelter cone
and a loop for a connecting pin. Closed wire rope sockets are hinge-mounted
by their fastening bolts. If the bearing surface of the loop is designed ac-
cording to Fig. 64, it will be able to follow the displacement of the rope from
the perpendicular to the plane of rotation to a limited degree.

Fig. 64: Closed wire rope socket (DIN 83 313)

Fig. 63: Open wire rope socket (DIN 83 313)

Rope sockets are not only used for attaching wire ropes to structural
parts. They also serve to connect wire ropes when adjusting the length of a
crane’s boom suspension ropes. In such a case, there is always one open
socket connected to a closed one.
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The spelter cone of rope sockets in accordance with DIN 83 313 has a
spelter-length five times the nominal wire rope diameter, and an opening
ratio of 1:3. This corresponds to an opening angle of 18.4°. There are many
other non-standardised spelter sockets on the market. Their advantage is
that they are considerably smaller and much lighter than the standardised
types.

In accordance with DIN 3092, the opening angle of a wire rope socket
should be between 5° and 18°, and the length of the spelter cone should be
at least five times the nominal rope diameter. Break tests have proved that,
even with shorter spelter cone lengths, the full breaking strength of the
rope can be transferred.

The smallest cone diameter should at least be 1.2 times the amount of
the nominal rope diameter + 3mm to take into account the tolerance of the
wire rope, and in order to enable the wire rope end, including its serving, to
be pushed into the socket. The smallest openings of the rope sockets in
accordance with DIN 83 313 are often smaller than the greatest permissi-
ble nominal rope diameter for these sockets. In these cases the sockets
may be bored open at their exits.

10.4.2  The problem of the moment of the rope

Under equal line pull, the moment of a wire rope increases linearly with the
rope diameter. Under equal tensile stress of the rope cross section, how-
ever, the line pull itself increases by the square of the rope diameter. The
consequence is that the moments which wire ropes exercise on their end
connections increase by a power of three of the rope diameter. At the same
time, the friction forces between the spelter cone and the rope socket only
increase linearly with the line pull, i.e. by the square of the rope diameter.
What are the consequences?

For example, a wire rope of 10mm diameter and a torque factor of 0.1,
when subjected to a line pull of 20 000N, will exercise a moment of 20Nm
on its end connection. The friction forces between the spelter cone and the
rope socket will prevent the rope from turning in the socket, and transfer
the moment onto the rope socket. In turn, the rope socket will transfer the
moment onto the structure it is attached to.

When a wire rope of the same design but six times the diameter is loaded
with the same percentage of its breaking strength, the line pull will in-
crease by a factor of 36, and will amount to the value of 720 000N. How-
ever, the moment of the rope will assume enormous proportions, it will be
increased to 4 320Nm. An increase in rope diameter by a factor of 6 will
increase the moment of the rope by a factor of 216!

This over-proportional increase of the moment must be not only taken
into account when designing the point of attachment, but also when de-
signing the socket itself. The moment trying to rotate the rope within the
socket will have increased by a factor of 216. The friction forces between
spelter cone and rope socket, which are supposed to prevent the ropes
from doing so, however, will only have risen by a factor of 36 (proportion-
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ally to the line pull, and proportional to the rope diameter squared). In this
case there is the danger that under load the spelter cone will rotate in its
socket.

Fig. 65 shows a photo- elastic stress analysis, carried out by Casar, on a
rope socket. With the aid of a thin plastic coating, deformations to the rope
elements, which are subjected to great line pull and a high moment, are
made visible by polarised light. It is evident that the perfectly symmetrical
rope socket is deformed and has become asymmetrical.

Fig. 65: Photo-elastic test on an open wire socket

On the one side the moment increases the deformations caused by the
pulling forces, on the other side it reduces them.

In order to prevent the spelter cone from rotating, rope sockets for large
diameter ropes are often fabricated with not round, but oval cross sections,
for instance. Another solution is to cut grooves inside the socket into which
the spelter cone can be indented (Fig 66a), or tongues which can also in-
dent with the spelter material (Fig. 66b). However, the grooves or tongues
must run longitudinally in the socket in order to allow the cone to be drawn
into the socket when loaded (setting). Only when the cone can move will it
be able to generate the transverse clamping forces required to transfer the
line load safely.

Fig. 66c shows a wire rope socket with tongues protruding into the spelter
material. These tongues will prevent the cone from setting. When a socket
of that type was tested with a large diameter rope, the cone was at first held
by the tongues so that the complete line pull was not transferred via the
cone, but via the tongues. The pulling force was increased steadily, and
eventually the spelter cone broke between the tongues. The lower part of
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Fig. 66d shows an American design with a circumferential groove in ac-
cordance with ‘US military specifications’. This groove does not prevent the
cone from rotating. It is supposed to prevent the spelter cone from popping
out of its socket in the event that the rope should suddenly be unloaded. In
reality, however, it prevents the cone from setting, which means the cone
cannot serve its purpose at all.

Some manufacturers have found a solution to the problem that on the
one hand they have to fulfill the federal specification, but on the other
hand they have to provide a termination which works; they design the
grooves so that they shear at 5% or less of the MBL of the rope. Other
designs with excessive numbers or overlarge grooves, however, will prevent
the cone from setting and the end connection from functionning.

10.4.3  Fabrication of the spelter socket

Before a rope socket is attached, it must first be examined carefully to
make sure it is in perfect condition. Fig. 67 shows a possible defect: there is
surface damage at one of the lugs. Austenitic manganese steel sockets
must be checked by means of a magnet for micro-structural changes caused
by the influence of temperature.

Fig. 66: Designs of rotation preventers

A B C D

the cone was released and abruptly pulled tight, whereas all the spelter
material above the tongues, shattered with a loud bang.
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Before being cut to length, the rope must be served as prescribed, near
the point where it will be cut, and at the point where the base of the socket
will be. The wire rope should be cut without welding or fusing it. Then rope
end is put through the spelter socket. After that, every single strand of the
rope is unlayed until a wire brush has been formed (Fig. 68). If the wire
rope has a steel core this must also be unlayed; a fibre core, however,
should be cut out up to the serving.

Fig. 67: Casting defect on an open wire rope socket

Fig. 68: Broom formed for socketing by unlaying the strands
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If the wire rope has an intermediate plastic layer, the plastic material
must be cut out up to the serving, before the steel core is unlayed.

Formerly, it was recommended that the wire ends be bent backwards so
that they were shaped like hooks, but this has not proved successful. Us-
ing this procedure, the wire volume is doubled in the upper part of the
spelter cone, but this does not increase the breaking strength. In fact, the
increased wire volume might even prevent the spelter material from pen-
etrating the spelter cup completely.

Fig. 69: Drying the rope brush

Next the wire brush is carefully cleaned and degreased with a degreasing
agent, e.g. Eskapon S 143. Toxic cleaning agents or those which encourage
corrosion must not be used. The bare, ungalvanised rope wires are then
treated with a caustic agent (e.g. Tego Roptin™ – a zinc chloride solvent) to
roughen their surfaces. Hydrochloric acid or soldering fluid must not be
used as there is a danger that any residue of the caustic agent might pen-
etrate the wire rope and cause corrosion. The wire brush is then immersed
into the caustic agent to a maximum of two thirds of its length before being
removed and dried (Fig. 69).

Then the wire brush is plated with solder in accordance with DIN 1707.
The temperature of the solder should be between 280°C and 300°C. Plating
in this way is also carried out with galvanised wires which are later cast
with Tego™ VG 3. During degreasing and plating, the wire rope brush must
always be inverted in order to avoid any fluids trickling down into the rope’s
interior.
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Next the wire rope brush is pulled back into the socket and attached to
the socket’s exit. This has the effect of achieving the correct rope length
whilst ensuring that the wire brush cannot move when being cast. Placing
a stopper directly beneath the socket will prevent excessive leakage of the
spelter material during casting.

It is also advisable to fix the rope socket at a reasonable height so that
the wire rope has enough room to drop in a perfectly straight line and can
be cast in this position (Fig. 70). Fig. 71 shows a wire rope that was cast
with the wire rope offset from the socket.

Before casting, about 1.5 times the amount of the spelter material re-
quired is heated up to the prescribed temperature. The casting tempera-
ture of the spelter material depends on its composition.

Fig. 72 provides an overview of the composition in percent of weight,
melting points, solidification ranges and casting temperatures of various
common spelter materials.

Fig. 70: Adjusting the wire rope socket
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Fig. 71: A wire rope that was not adjusted before casting

Fig. 72: Composition, melting points and temperatures of common spelter materials
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During the casting process there is always the danger that the molten
spelter material will solidify prematurely in the upper areas of the socket
when coming into contact with the cold socket and the cold rope wires.
This can prevent the penetration of the spelter material into the lower reaches
of the spelter socket and could result in air pockets in the spelter cone.
Therefore, prior to casting, the rope socket should be heated up to a tem-
perature approaching that of the melting temperature of the spelter mate-
rial. This can be achieved by means of controllable burners e.g. ring-shaped
gas burners (see Fig. 73).

Fig. 73: Preheating the rope socket

The temperature of the socket should be monitored with the aid of thermo-
coupling devices or the type of thermo-crayons which change colour de-
pending on the temperatures achieved.
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Fig. 74: Slow pouring of the spelter material

Next the casting process begins. The spelter material must be slowly and
steadily poured into the wire rope socket so that no air can be trapped
inside (Fig. 74). The oxide skin must be skimmed off.

If the design of the stopper beneath the rope socket permits it, small
quantities of the spelter material can seep through the valleys in between
the outer strands of the rope. This is a clear sign that the spelter material
has actually reached the base of the rope socket.

After casting, the top of the spelter cone should be reheated with a burner
to ensure that no cavities are trapped inside it. Then, if necessary, more
spelter material can be poured in to fill the socket to its brim in order to
create a finish that is flush with the socket. Finally, identifying marks are
stamped into the surface of the spelter material using steel stamping tools.
In special cases a metal tag bearing the required information can be en-
closed in the spelter material.
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Once the spelter material has solidified and cooled down, the serving is
removed from the socket exit. Then the area where the wire rope leaves the
socket must be protected against corrosion. This can be done by painting
on or immersing the rope into an anti-rusting agent or relubricant.

10.5  Inspection

During inspection, the rope sockets should be examined for cracks, espe-
cially in the vicinity of the loops and the lugs. The area where the rope
leaves the socket must be inspected for wire breaks and also for kinks or
changes in lay lengths. This is especially the case with boom suspension
ropes which are frequently dismantled. Occasionally, wire breaks can be
found adjacent to the rope socket or along the first few centimetres inside
it. These are caused either by kinking the rope when handling it, or by a
lack of spelter material or insufficient and inadequate relubrication. There-
fore, these areas must be inspected with particular care.

Normally, after the rope has been discarded, the rope socket will be re-
used. Before using the socket again, it must be inspected meticulously for
any signs of physical damage or cracks.

10.6  Special designs

When rotation-resistant ropes are used, it is often recommended that a
swivel be fitted between the rope end connection and the point of attach-
ment to the crane. However, the lifting height of the device will be reduced
by the fitting of the swivel. Here the use of a spelter socket with a built in
swivel is recommended (Fig. 75).

This end connection reduces the lifting height only marginally and has
the added advantage that the swivel will always automatically align itself
with the wire rope.

Fig. 75: Spelter socket with built-in swivel
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10.7  The pear-shaped socket

Sometimes end connections have to run over sheaves or onto drums. In
these cases, the end connections as well as the sheaves and drums must
be specially designed. One example is the Demag rope-connector which
joins two rope ends using two pear-shaped sockets and a screw-link (Fig.
76). This rope connector can travel over a specially designed sheave with
two grooves (Fig. 77). The first groove is wide enough to accommodate the
socket, the second groove, undercutting the first groove, accommodates
the rope.

Fig. 76: Rope pear sockets with link

The Demag rope connector is advantageous if a short section of rope fails
considerably earlier than the rest of the rope length. In such a case it is not
necessary to discard the entire rope length, but only the worn out section.
The replacement section can then be screwed onto the undamaged rope
length.

Such a rope end connection might conceivably be used in a situation
where, due to a high number of bending cycles over relatively small sheaves,
and due to abrasion caused by particles from bulk cargo being unloaded,
the short length of a grab rope in a two- or four-rope grab can wear out very
quickly. In this case only the short rope length inside the grab is replaced
and not the whole closing rope.

Fig. 78 shows the connection of wire ropes with the aid of pear-shaped
sockets on a wire rope drum.

The rope connection must be of a very short fitting length and it must
also be of a special design so that it can follow the curvature of the widened
sheave or drum. Fig. 79 shows a pear-shaped socket cut in half with a rope
defect at the exit of the pear. It is evident that the spelter length is very
short. Nevertheless, these rope end connections are able to transfer the full
breaking strength of the rope.

If the permissible casting temperature of the spelter material is exceeded,
pear-shaped sockets of austenitic manganese steel will lose their tensile
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strength due to embrittlement, which is caused by the decomposition of
their austenitic micro-structure. In this case they must not be used again.
When losing its tensile strength, the metal becomes heavily magnetic. There-
fore, the integrity of the pear can be tested by examining it at several points
with a permanent magnet. Pears may be reused if a magnet exercises no
more than 30% of its normal attraction to unalloyed steel.

At their exit, the pear-shaped sockets display a trumpet-shaped widen-
ing. This cavity is filled with spelter material during the casting process.
When running over the U-shaped sheave, the wire rope is heavily bent in
this trumpet section. At the same time, the rope is lifted abruptly onto a
greater sheave diameter. This generates an additional dynamic loading for
this critical rope section. In the course of time this might lead to wire breaks
at the exit of the pear.

The high pressure on the spelter material in the trumpet shaped cavity
during bending of the rope can in no time lead to cracks in the spelter
material (Fig. 80) which, as a result of its wedge-shape, is pushed out of the
socket in fragments, bit by bit. Near the trumpet-shaped widening the wire
rope will, after a certain time, become completely bare and unprotected. In

Fig. 77: Sheave for
Demag pear-shaped socket

Groove for
rope

Groove for
pear socket
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a socket hanging downwards, water can collect where the socket is no
longer filled with spelter material.

Before casting, the bare rope zone was lightly etched, after casting, how-
ever, it was not relubricated because it was surrounded by spelter mate-
rial. Therefore, this section will now rapidly fail due to severe corrosion and

Fig. 78: Pear-shaped sockets with a screw-link on a rope drum

Fig. 79: A pear-shaped socket cut in half showing rope damage



67

high mechanical stresses and must therefore be observed carefully. Fig. 81
shows a pear-shaped socket cut open to illustrate a typical failure. Fig. 82
is another example of this.

It has proved advantageous to alter the trumpet shape by boring open
the socket. If resin spelter materials are used, wire pear-shaped sockets
will usually achieve much better results than when metallic spelter materi-
als are used. Not only do the resins appear to absorb dynamic impacts
more readily, they also seem to be more tolerant to the stresses they en-
dure at the exit of the pear.

Furthermore, if resin spelter materials are used, there is no danger of
over-heating the pear-shaped socket during casting.

There is, however, a disadvantage with resin spelter material: after dis-
carding the rope, the resin has to be removed mechanically from the pear,
whereas the metallic spelter material only needs to be reheated and lique-
fied.

Fig. 80: A pear-shaped socket cut in half showing rope damage
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Fig. 81: Corrosion and wire breaks at the pear’s exit

Fig. 82: Corrosion and wire breaks at the pear’s exit
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11.  The resin spelter socket

The resin spelter socket is a very reliable and efficient rope end connection.
In a pull test it achieves the highest breaking loads. Furthermore, its ten-
sion-tension endurance is excellent. Compared to metallic spelter sockets
it has one great advantage: it can be fabricated on-site without any special
equipment. Additionally, the finished resin end connection is lighter than
the metallic one. The resin spelter socket lends itself to all applications
where reductions in breaking strength brought about by the end connec-
tions have to be taken into account when selecting the wire rope dimen-
sions. The resin spelter socket is also used in applications where the end
connections have to be fitted on-site. Resin has almost entirely replaced
metal as a casting material for pear-shaped sockets.

The long-term behaviour of resins – service times of ten years or more –
have not been sufficiently tested yet. This is the reason why resin spelter
sockets are not more common as end connections for suspension ropes.

11.1  Breaking load, tension-tension endurance and working
         temperatures

In a quasi-static pull test, resin spelter sockets transfer the full breaking
strength of the wire rope used. In a dynamic tension-tension test they achieve
the highest number of tension-tension cycles of any wire rope end connec-
tion. The manufacturer of Wirelock™ recommends working temperatures
below 115°C.

11.2  Standardisation

Resin spelter sockets are not standardised.

11.3  Operating mechanism

At its end the wire rope is fanned out like a brush and plugged conically
into a wire rope socket. With increasing line pull, the resin cone is pulled
deeper and deeper into the socket, generating increasing clamping forces.
The transfer of force from the wire rope to the resin cone is achieved by
force closure and material closure. The transfer of force between the resin
cone and the rope socket is achieved purely by force closure.

11.4  Fabrication / Installation

The casting material consists of a resin, usually polyester resin or epoxy
resin, a hardener and filler material. The hardener is needed to cross-link
the resin. During the cross-link reaction, the filler material absorbs part of
the heat of reaction and prevents the resin cone from becoming over-heated
and subsequently forming cracks.
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Fig. 83: Resin spelter socket pushed out of its socket mechanically

It also reduces the shrinkage of the spelter cone when it cools down, and
it reduces the cost of the spelter material. The brand Wirelock™, based on a
polyester, has proved very successful.

Selecting the rope socket, preparing and degreasing the wire rope brush,
as well as hanging up the socket, are carried out in the same way as that
described for metallic spelter sockets in section 10.4.3. Cleaning the wire
rope brush in an ultrasonic bath is recommended.

Before casting, the required amounts of resin and hardener must be as-
sembled and their expiry date checked. Some components only have a shelf-
life of about nine months, and using them after their expiry date can prove
highly dangerous. For instance, the spelter might only harden at its sur-
face and could fail later when subjected to a high load.

The required amount of resin is added to the respective amount of hard-
ener and stirred for the prescribed time, typically about two to five min-
utes. Then the casting process can begin.

The spelter material must be poured into the socket slowly and steadily.
Casting should be interrupted several times in order to allow any trapped
air bubbles to escape. Depending on the design of the stopper beneath the
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rope socket, the penetration of small quantities of resin into the valleys
between the outer strands of the wire rope usually indicates that the spelter
material has actually reached the base of the socket.

Finally, identifying marks are stamped into the surface of the spelter
material using steel stamping tools. In special cases a metal tag bearing
the required information can be enclosed in the spelter material.

After about thirty minutes, the resin will have hardened and solidified.
Now the serving should be removed from the point where the rope leaves
the socket. This area must then be carefully relubricated.

This can be done by painting on or immersing the rope into an anti-
rusting agent or relubricant. After approximately one and a half hours,
resin spelter sockets are usually ready to be loaded.

11.4.1  Resin spelter sockets with pear-shaped sockets

When using metallic spelter materials in pear-shaped sockets, often the
spelter material flakes off at the point where the rope leaves the pear (see
section 10.7). With increasing service time this leads to wire breaks and
corrosion in this area. Due to the higher elasticity of resin, this phenom-
enon does not occur with resin spelter sockets. In addition, there is no
danger of over-heating the austenitic manganese steel pear-shaped sock-
ets, which would lead to a reduction in their tensile strength. For these
reasons, resin has almost entirely replaced metal as a casting material for
wire pear-shaped sockets.

11.4.2  Reusing the rope socket

When a rope socket comes to be cast again, it is a disadvantage of resin
that it can only be removed at great expense. Whereas metallic spelter can
be reheated until the metal flows out of the socket, it is not possible to
plastify the hardened resin by means of heat. Therefore, the spelter cone
must be removed mechanically. Some users of resin spelter sockets have
built hydraulic devices which enable them to push the resin cone out of its
socket (Fig. 83).

11.5  Inspection

See section 10.5

11.6  Special designs

See section 10.6
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12.  Let’s talk about prices

Obviously price is an important factor when selecting a rope end connec-
tion. For example, an aluminium clamp is good value for small nominal
rope diameters, a splice or metallic socket can be many times as expensive.
However, with increasing nominal rope diameter, the price differences de-
crease, and above a certain nominal rope diameter, the metallic spelter
socket can even prove to be the cheapest solution.

The following sections compare prices of end connections based on 1997
price lists. Since these prices may change over time, in different countries
with different discounts available and with the end connections selected or
wire ropes used, the conclusions drawn are shown as a general guide only.

12.1  The price of end connections for running ropes

The continuous curve in Fig. 84 illustrates the price ratio of an aluminium
clamp fitted with a thimble (DIN 3091) and of a metallic spelter socket, as
a function of the nominal rope diameter. As shown, a spelter socket for a
12mm nominal diameter rope is four times as expensive as a clamp. Al-
though the proportional difference decreases with increasing nominal rope
diameter, for a 44mm rope a spelter socket is still twice as expensive as a
clamp. This is one of the reasons why, especially for series cranes, the
aluminium clamp is preferred to the metallic spelter socket.

12.2  The price of end connections for suspension ropes

As we have seen from the above, when selecting the end connection for a
running rope, no distinction is made with respect to the breaking strength
of the different types of end connections available. When selecting the end
connection for a static rope, however, the loss of breaking strength caused
by the end connection must be taken into account by increasing the rope
diameter.

According to DIN 15 018, metallic spelter sockets or bollards will provide
100% of breaking strength. In the case of aluminium clamps, the breaking
strength of the rope must be reduced to 90%, with wedge sockets and
splices that figure is reduced to only 80%.

If the designer uses aluminium clamps, wedge sockets or splices as end
connections, the rope diameter must be increased to compensate for the
loss of breaking load caused by the end connection. With increasing rope
diameter, the size, weight and price of the end connection will also in-
crease.

The dotted curve in Fig. 84 shows the price ratio of aluminium clamps
against metallic spelter sockets, taking into account the increase in size
and price of aluminium clamps. The difference in price is no longer that
great.

Yet, throughout the entire range of diameters shown, the aluminium clamp
is still the cheaper end connection. However, when using aluminium clamps,
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Fig. 84: Price ratio of aluminium clamp against spelter socket with and without regard
to increase in rope diameter.

Fig. 85: Price ratio of aluminium clamps against spelter sockets taking into account
the increase in nominal rope diameter and in rope price
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86: Rope length for price equilibrium. Above the indicated rope length a suspension
rope with metallic spelter sockets is cheaper than one with aluminium clamps

wedge sockets and splices, the rope diameter must be increased, resulting
in a higher rope price. This means that above a certain length of the sus-
pension rope, the higher wire rope price will negate the price advantage of
the end connection.

Fig. 85 shows the price ratio of suspension ropes with aluminium clamps
and metallic spelter sockets as a function of the rope length. For instance,
a suspension rope with a nominal rope diameter of 12mm and a length of
five metres, fitted with two aluminium clamps, will cost only 40% of a simi-
lar rope fitted with two metallic spelter sockets. When 78 metres long, how-
ever, the two suspension ropes cost the same. Above 78 metres, the sus-
pension ropes with metallic spelter sockets are cheaper.

With increasing nominal rope diameters, the price equilibrium will be
reached with shorter and shorter rope lengths. For a 48mm rope, the ex-
ecution with two aluminium clamps is cheaper, but only up to a length of
19 metres. If the rope length for which the suspension ropes with the dif-
ferent end connections are of the same price is plotted against the nominal
rope diameter, the relationship is – interestingly enough – a linear one
(Fig. 86).
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